
//& (L 7 #
A GENERAL ARCHITECTURE / $(?

FOR INTELLIGENT TRAINING SYSTEMS

Final Report
,-

f- NASA/ASEE Summer Faculty Fellowship Program-- 1987 ' I

r r * / C '
0' . ' Johnson Space Center .r

Prepared by:

Academic Rank:

University & Department

NA S A/JS C

Directorate:

Division:

Branch :

Section:

JSC Colleague:

Date:

Contract Number:

R. Bowen Loftin, Ph.D.

Associate Professor

University of Houston-
Downtown
Department of Natural Sciences
One Main Street
Houston, Texas 77002

Mission Support

Mission Planning and Analysis

Technology Development and
Applications

Artificial Intelligence

Robert T. Savely

August 14, 1987

NGT 44-00 1-800

19-1

ABSTRACT

A preliminary design of a general architecture for autonomous
intelligent training systems has been developed. The architecture
integrates expert system technology with teachinghraining
methodologies to permit the production of systems suitable for use
by NASA, other government agencies, industry, and academia in the
training of personnel for the performance of complex, mission-critical
tasks. The proposed architecture consists of five elements: a user
interface, a domain expert, a training session manager, a trainee
model, and a training scenario generator. A user interface permits
the trainee to access data and perform actions as he would in the
task environment. The interface also provides the trainee with
information on the current training environment and with on-line
help. The domain expert contains the rules and procedural
knowledge needed to carry out the task. It also includes "mal-rules"
which permit the identification of common errors on the part of the
trainee. The training session manager (TSM) examines the actions of
the trainee and compares them with the actions of the domain
expert. A unique feature of the TSM is its ability to permit the
trainee the freedom to follow any valid path between two stages of
the task for which he is being trained. Following each trainee action,
evaluative assertions are made by the TSM and used to update the
trainee model. A trainee model is developed for each individual
using the system. The model includes a history of the trainee's
interactions with the intelligent training system and provides
evaluative data on the trainee's current skill level. A training
scenario generator designs appropriate training exercises for each
trainee based on the trainee model and the training goal(s). The
design of this architecture has been guided and its efficacy tested
through the development of a system for use by Mission Control
Center Flight Dynamics Officers in training to perform Payload-Assist
Module Deploys from the orbiter.

19-2

INTRODUCI'ION

Government and industry must maintain a large effort in the
training of their personnel: new personnel must be trained to
perform the task(s) which they were hired to perform, continuing

.personnel must be trained to upgrade or update their ability to
perform assigned tasks, and continuing personnel must be trained to
tackle new tasks. Within NASA a great number of training
methodologies are employed, singly or in concert. These methods
include training manuals, formal classes, procedural computer
programs, simulations, and on-the-job training. The latter method is
particularly effective in complex tasks where a great deal of
independence is granted to the task performer. Of course, this
training method is also the most expensive and may be impractical
when there are many trainees and few experienced personnel to
conduct on-the-job training.

This report describes an effort to design an architecture for an
entire generation of autonomous training systems which integrate
many of the features of "traditional" training programs with expert
system technology. The ultimate goal of this program is a software
development environment which would permit those responsible for
training in government, industry, and academia to develop intelligent
computer-aided training (ICAT) systems for specific tasks. These
ICAT systems would operate autonomously and would provide, for
the trainee, much of the same experience that could be gained from
the best on-the-job training. By integrating domain expertise with a
knowledge of appropriate training methods, an ICAT session is
intended to duplicate, as closely as possible, the trainee undergoing
on-the-job training in the task environment, benefiting from the full
attention of a task expert who is also an expert trainer. Thus, the
philosophy of the ICAT system is to emulate, to the extent possible,
the behavior of an experienced individual devoting his full time and
attention to the training of a novice--proposing challenging training
scenarios, monitoring and evaluating the actions of the trainee,
providing meaningful comments in response to trainee errors,
responding to trainee requests for information and hints (if
appropriate), and remembering the strengths and weaknesses

19-3

displayed by the trainee so that appropriate future exercises can be
designed.

BACKGROUND

Since the 1970's a number of academic and industrial
researchers have explored the application of artificial intelligence
concepts to the task of teaching a variety of subjects (e.g., geometry,
computer programming, medical diagnosis, and electronic
troubleshooting). A body of literature is now extant on student
models and teachinghutoring methodologies adapted to intelligent
tutoring systems in the academic environment1 . The earliest
published reports which suggested the applications of artificial
intelligence concepts to teaching tasks appeared in the early
19701s.293 Hartley and Sleeman3 actually proposed an architecture
for an intelligent tutoring system. However, it is interesting to note
that, in the fourteen years which have passed since the appearance
of the Hartley and Sleeman proposal, no agreement has been reached
among researchers on a general architecture for intelligent tutoring
sy s t ems . 4 Nonetheless, a study of the literature on intelligent
tutoring systems is an essential starting point for the development of
the elements of an intelligent training system.

Among the more notable intelligent tutoring systems reported
to date are SOPHIE5, PROUST6 and the LISP Tutor'. The first of these
systems, SOPHIE, was developed in response to a U.S. Air Force
interest in a computer-based training course in electronic
troubleshooting. SOPHIE contains three major components: an
electronics expert with a general knowledge of electronic circuits,
together with detailed knowledge about a particular type of circuit
(in SOPHIE this was an IP-28 regulated power supply); a coach which
examines student inputs and decides if it is appropriate to stop the
student and offer advice; and a troubleshooting expert that uses the
electronics expert to determine which possible measurements . are
most useful in a particular context. Three versions of SOPHIE were
produced and used for a time but none was ever viewed as a
"finished" product. One of the major lacks of the SOPHIE systems was
a user model. It is interesting to note that the development of a
natural language interface for SOPHIE represented a large portion of
the total task.

19-4

PROUST and the LISP Tutor are two well-known intelligent
tutoring systems that have left the laboratory and found wider
applications. PROUST (and its offspring, Micro-PROUST) serves as a
"debugger" for finding nonsyntactical errors in Pascal programs
written by student programmers. The developers of PROUST claim
that it is capable of finding all of the bugs in at least seventy percent
of the "moderately complex" programming assignments that its
examines. PROUST contains an expert Pascal programmer that can
write "good" programs for the assignments given to students. Bugs
are found by matching the expert's program with that of the student;
mismatches are identified as "bugs" in the student program. This
ability is contained in the PROUST "bug rule" component. After
finding a bug, PROUST provides an English-language description of
the bug to the student, enabling the student to correct his error. The
system cannot handle student programs that depart radically from
the programming "style" of the expert. The LISP Tutor is currently
used to teach the introductory Lisp course offered at Carnegie-Mellon
University. This system is based on the ACT (historically, a d a p t i v e
Control of Thought) theory and consists of four elements: a
structured editor which serves as an interface to the system for
students, an expert Lisp programmer that provides an "ideal"
solution to a programming problem, a bug catalog that contains
errors made by novice programmers, and a tutoring component that
provides both immediate feedback and guidance to the student.
Evaluations of the LISP Tutor show that it can achieve results similar
to those obtained by human tutors. One of its primary features is its
enforcement of what its authors regard as a "good" programming
style.

TRAINING VERSUS TUTORING

The ICAT architecture has been developed with a clear
understanding that training is not the same as teaching or tutoring.8
The NASA training environment differs in many ways from an
academic teaching environment These differences are important in
the design of an architecture for an intelligent training system:

19-5

a. Assigned tasks are often mission-critical, placing
the responsibility for lives and property in the hands of
those who have been trained.

b. Personnel already have significant academic and
practical experience to bring to bear on their assigned

c. Trainees make use of a wide variety of training
techniques, ranging from the study of comprehensive
training manuals to simulations to actual on-the-job
training under the supervision of more experienced

d. Many of the tasks offer considerable freedom in the
exact manner in which they may be accomplished.

Those undergoing training for complex, mission-critical tasks
are usually well aware of the importance of their job and the
probable consequences of failure. While students are often
motivated by the fear of receiving a low grade, trainees know that
human lives and/or expensive equipment may depend on their skill
in performing assigned tasks. This means that trainees may be
highly motivated, but it also imposes on the trainer the responsibility
for the accuracy of the training content (Le., verification of the
domain expertise encoded in the system) and the ability of the
trainer to correctly evaluate trainee actions. The ICAT system is
intended, not to impart basic knowledge, but to aid the trainee in
developing skills for which he already has the basic or "theoretical"
knowledge. In short, this training system is designed to help a
trainee put into practice that which he already intellectually
understands. The system must take into account the type of training
that both precedes and follows, building on the knowledge gained
from training manuals and rule books while preparing the trainee for
and complementing the on-the-job training which will follow.
Perhaps most critical of all, trainees must be allowed to carry out an
assigned task by any valid means. Such flexibility is essential so that
trainees are able to retain and even hone an independence of
thought and develop confidence in their ability to respond to
problems, even problems which they have never encountered and
which their trainers never anticipated.

19-6

SYSTEM DESIGN

The ICAT system architecture is modular and consists of five
basic components:

1. A user interface that permits the trainee to access
the same information available to him in the the task
environment and serves as a means for the trainee to
assert actions and communicate with the intelligent
training system

2. A domain expert which can carry out the task using
the same information that is available to the trainee and
which also contains a list of "mal-rules" (explicitly
identified errors that novice trainees commonly make).

3. A training session manager (TSM) which examines
the assertions made by the domain expert (of both
correct and incorrect actions in a particular context) and
by the trainee. Evaluative assertions are made following
each trainee action. In addition, guidance can be
provided to the trainee if appropriate for his skill level.

4. A trainee model which contains a history of the
individual trainee's interactions with the system together
with summary evaluative data.

5 . A training scenario generator that designs
increasingly-complex training exercises based on the
current skill level contained in the trainee's model and on
any weaknesses or deficiencies that the trainee has
exhibited in previous interactions.

Figure 1 contains a schematic diagram of the ICAT system.
Note that provision is made for the user to interact with the system
in two distinct ways and that a supervisor may also query the
system for evaluative data on each trainee. The blackboard serves
as a common "factbase" for all five system components. With the
exception of the trainee model, each component makes assertions to
the blackboard, and the rule-based components look to the
blackboard for facts against which to pattern match the left-hand
sides of their rules.

19-7

[I INTERFACE

DOMAIN
v EXPERT MANAGER

TRAINING
SCENARIO

GENERATOR

FIGURE 1. ICAT ARCHITECTURE

19-8

User Interface

The primary factor influencing the interface design is fidelity
to the task environment. To avoid negative training, it is essential
that the functionality and, to the extent possible, the actual
appearance of the training environment duplicate that in which the
task is performed. The interaction of the user interface with the
other components of the ICAT system can be standardized and
transported to any task environment; however, the user interface, as
viewed by the trainee, must be developed for each task
environment. The training of different tasks in the same
environment may be able to utilize the same user interface. As a
part of this project, a user interface was designed for a console
position in the Mission Control Center at NASA/Johnson Space Center.
The details of that interface are described elsewhere.9

Domain Expert

The domain expert is a "traditional" expert system in that it
contains if-then rules which access data describing the task
environment and is capable of executing the task and arriving at the
correct "answers" or performing the correct actions. In addition to
"knowing" the right way to carry out the task, the domain expert also
contains knowledge of the typical errors that are made by novices.
In this way, the ICAT system can not only detect an erroneous action
made by a trainee, but also, through these so-called "mal-rules", it
can diagnose the nature of the error and provide an error message to
the trainee specifically designed to inform the trainee about the
exact error made and correct the misconception or lack of knowledge
that led to the commission of that error. Another of the interesting
features of the ICAT system is its continual awareness of the
environment (the external constraints dictated by the training
exercise) and the context of the exercise. Rather than having the
domain expert generate a complete and correct set of actions to
accomplish the task, only those actions which are germane to the
current context are asserted. In this way the expert "adapts" to
alternate, but correct, paths that the trainee might choose to follow.
Figure 2 shows schematically how the domain expert operates. This
strategy was adopted because the human experts that perform
complex tasks often recognize that many steps in the process may

19-9

BLACK BOARD

(A) PREVIOUS EVENTS
RULES IN DOMAIN
EXPERT

(8) TRAINEE ACTION
MATCHES OPTION
ASSERTED BY
DOMAIN EXPERT

Trainee Action

(C) MATCHED OPTION
REASSERTED AS
LATEST EVENT

(D) UNUSED OPTIONS
DELETED BEFORE
NEXT STEP

STEP 4

EVENT 1
EVENT 2
EVENT 3

EVENT 1
EVENT 2
EVENT 3

option1 J
option 2 J
option 3 J
option 4 J

EVENT 1
EVENT 2
EVENT 3
EVENT 4

option 3
option 4

option 1

STEP 5

EVENT 1
EVENT 2
EVENT 3
EVENT4

FIGURE 2 . OPERATION OF DOMAIN EXPERT

19-10

be accomplished by two or more equally valid sequences of actions.
To grant freedom of choice to the trainee and to encourage
independence on his part, this type of flexibility in the ICAT system
was deemed essential.

Training Session Manager

The training session manager is dedicated principally to error-
handling. Its rules compare the assertions of the domain expert with
those of the trainee to detect errors. Subsequently, the domain
expert asserts facts that allow the TSM to write appropriate error
messages to the trainee through the user interface. In addition, the
TSM is sensitive to the skill level of the trainee as represented by the
trainee model. As a result, the detail and "tone" of error messages is
chosen to match the current trainee. For example, an error made by
a first time user of the training system may require a verbose
explanation so that the system can be certain that the trainee will
have all of the knowledge and concepts needed to proceed. On the
other hand, an experienced trainee may have momentarily forgotten
a particular procedure or may have "lost his place". In this latter
case a terse error message would be adequate to allow the trainee to
resume the exercise. The TSM also encodes all trainee actions, both
correct and incorrect, and passes them to the trainee model.

Trainee Model

Successful intelligent tutors incorporate student models to aid
in error diagnosis and to guide the student's progress through the
tutor's curriculum.10 The trainee model in the ICAT system stores
assertions made by the TSM as a result of trainee actions. Thus, at
its most fundamental level, the trainee model contains, for the
current training session, a complete record of the correct and
incorrect actions taken by the trainee. At the conclusion of each
training session, the model updates a training summary which
contains information about the trainee's progress, such as a skill level
designator, number of sessions completed, number of errors made
(by error type and session), and the time taken to complete sessions.
After completing a session, the trainee can obtain a report of that
session which contains a comprehensive list of correct and incorrect
actions together with an evaluative commentary. A supervisor can

19-11

access each trainee's model to obtain this same report or to obtain
summary data, at a higher level, on ' the trainee's progress. Finally,
the training scenario generator uses the trainee model to produce
new training exercises.

Training Scenario Generator

The training scenario generator relies upon a database of task
"problems" to structure unique exercises for a trainee each time he
interacts with the system. The initial exercises provided to a new
trainee can be based on variants of the purely nominal task with no
time constraints, distractions or "problems". Once the trainee has
demonstrated an acceptable level of competence with the nominal
task, the generator draws upon its database to insert selected
problems into the training environment. In addition, time
constraints are "tightened" as the trainee gains more experience and
distractions of a form appropriate for the task environment are
presented at "inconvenient" points during the task. The generator
also examines the trainee model for particular types of errors
committed by the trainee in previous (and the current) sessions. The
trainee is then given the opportunity to demonstrate that he will not
make that error again. Ultimately, the trainee is presented with
exercises which embody the most difficult problems together with
time constraints and distractions comparable to those encountered
during the completion of an experienced person in the actual task
environment.

SYSTEM INTEGRATION

The ICAT system which has been built as a prototype for this
project is currently operational on a Symbolics 3600 series Lisp
machine. The user interface and trainee model are written in
common Lisp while the rules of the domain expert, TSM, and the
training scenario generator are written in ART 3.0. This prototype
system will ultimately be delivered to the users in a Unix
workstation environment. To accomplish this delivery, the ART rules
were written to facilitate translation into to CLIPSII and the Lisp
code will be converted into C.

19-12

CONCLUSIONS

The prototype ICAT system has, so far, proven to be a potentially
valuable addition to the training tools available for training Flight
Dynamics Officers in shuttle ground control. The authors are
convinced that the basic structure of the ICAT system described here
can be extended to form a general architecture for intelligent
training systems for training flight controllers and crew members in
the performance of complex, mission-critical tasks. It may
ultimately be effective in training personnel for a wide variety of
tasks in governmental, academic, and industrial settings.

19-13

1. See, for example, Sleeman, D. and Brown, J.S. (eds.),
Intelligent TutorinP Sv stems (London: Academic Press, 1982) and
Yazdani, M. "Intelligent Tutoring Systems Survey," Ar t i f i c i a l
Intelligence Review 1, 43 (1986).

2. Carbonell, J.R. "AI in CAI: An Artificial Intelligence
Approach to CAI," IEEE Transactions on Man-Machine Svs tems
11(4), 190 (1970).

3. Hartley, J.R. and Sleeman, D.H., "Towards Intelligent Teaching
Systems," International Journal of Man-Machine Studies 5 , 215
(1973).

4. Yazdani, M. "Intelligent Tutoring Systems Survey," Artificial
Intellieence - Review 1, 43 (1986).

5 . Brown, J.S., Burton, R.R., and de Kleer, J., "Pedagogical,
Natural Language and Knowledge Engineering Techniques in SOPHIE
I, 11, and 111," in Sleeman, D. and Brown, J.S., (eds.), Intel l igent
TutorinP Sy stems (London: Academic Press, 1982), p. 227.

6. Johnson, W.L. and Soloway, E. "PROUST, 'I Bvte 10 (4), 179
(April, 1985).

7. Anderson, J.R., Boyle, C.F., and Reiser, B.J., "Intelligent
Tutoring Systems," Science 228, 456 (1985) and Anderson, J.R. and
Reiser, B.J., "The LISP Tutor," Byte 10(4), 159 (April, 1985).

8. Harmon, P. "Intelligent Job Aids: How AI Will Change
Training in the Next Five Years," in Kearsley, G., ed., Artificial
Intelligence and Instruction: ADDlications and Methods (Reading,
MA: Addison Wesley Publishing Co., 1987).

19-14

9. Loftin, R.B., Wang, L., Baffes, P., and Rua, M., "An Intelligent
Computer-Aided Training System for Payload-Assist Module
Deploys," Proceedings of the First Annual Workshop on Space
Operations. Automation 8z Robotics (SOAR '87), NASA/Johnson Space
Center, Houston, TX, August 4-6, 1987.

10. See, for example, a number of papers on student models
in Sleeman, D. and Brown, J.S., (eds.), Intelligent TutorinP Sy stems
(London: Academic Press, 1982)

11. "CLIPS" is an acronym for "C-Language Integrated
Production System" and was developed by the Artificial
Intelligence Section, Mail Code FM72, NASA/Johnson Space Center,
Houston, TX 77058. Its advantages as a delivery vehicle for expert
systems are discussed in Giarratano, J., Culbert, C., Riley, G., a n d
Savely, R.T., "A Solution of the Expert System Delivery Problem,"
submitted for publication in IEEE Expert. For additional information
on CLIPS, write to the AI Section at NASA/JSC.

19-15

